Egyszerű nézet

dc.contributor.author Mártonfalvi Zsolt
dc.contributor.author Pasquale Bianco
dc.contributor.author Naftz Katalin
dc.contributor.author Ferenczy G. György
dc.contributor.author Kellermayer Miklós
dc.date.accessioned 2018-03-05T08:03:25Z
dc.date.available 2018-03-05T08:03:25Z
dc.date.issued 2017
dc.identifier 85014070698
dc.identifier.citation pagination=1380-1390; journalVolume=26; journalIssueNumber=7; journalTitle=PROTEIN SCIENCE;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/4786
dc.identifier.uri doi:10.1002/pro.3117
dc.description.abstract Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. This article is protected by copyright. All rights reserved.
dc.relation.ispartof urn:issn:0961-8368
dc.title Force generation by titin folding
dc.type Journal Article
dc.date.updated 2018-02-14T14:55:39Z
dc.language.rfc3066 en
dc.identifier.mtmt 3184168
dc.identifier.wos 000403920000012
dc.identifier.pubmed 28097712
dc.contributor.department SE/AOK/I/Biofizikai és Sugárbiológiai Intézet
dc.contributor.department SE/AOK/I/BSI/MTA-SE Molekuláris Biofizikai Kutatócsoport
dc.contributor.institution Semmelweis Egyetem
dc.mtmt.swordnote FELTÖLTŐ: Haluszka Dóra (SE_AOK_Adm5_Biofiz_HD) - haluszka.dora@med.semmelweis-univ.hu


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet