| dc.contributor.author | Andreas Keller | |
| dc.contributor.author | Richard C. Gerkin | |
| dc.contributor.author | Yuanfang Guan | |
| dc.contributor.author | Amit Dhurandhar | |
| dc.contributor.author | Turu, Gábor | |
| dc.contributor.author | Szalai, Bence | |
| dc.contributor.author | Joel D. Mainland | |
| dc.contributor.author | Yusuke Ihara | |
| dc.contributor.author | Chung Wen Yu | |
| dc.contributor.author | Russ Wolfinger | |
| dc.contributor.author | Celine Vens | |
| dc.contributor.author | Leader Schietgat | |
| dc.contributor.author | Kurt De Grave | |
| dc.contributor.author | Raquel Norel | |
| dc.contributor.author | DREAM Olfaction Prediction Consortium | |
| dc.contributor.author | Gustavo Stolovitzky | |
| dc.contributor.author | Guillermo A. Cecchi | |
| dc.contributor.author | Leslie B. Vosshall | |
| dc.contributor.author | Pablo Meyer | |
| dc.date.accessioned | 2018-10-13T08:09:19Z | |
| dc.date.available | 2018-10-13T08:09:19Z | |
| dc.date.issued | 2017 | |
| dc.identifier | 85013999403 | |
| dc.identifier.citation | pagination=820-826; journalVolume=355; journalIssueNumber=6327; journalTitle=SCIENCE; | |
| dc.identifier.uri | http://repo.lib.semmelweis.hu//handle/123456789/4800 | |
| dc.identifier.uri | doi:10.1126/science.aal2014 | |
| dc.description.abstract | It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce.We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features.The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit.These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. | |
| dc.relation.ispartof | urn:issn:0036-8075 | |
| dc.title | Predicting human olfactory perception from chemical features of odor molecules | |
| dc.type | Journal Article | |
| dc.date.updated | 2018-02-15T15:23:33Z | |
| dc.language.rfc3066 | en | |
| dc.identifier.mtmt | 3233866 | |
| dc.contributor.department | SE/AOK/I/Élettani Intézet | |
| dc.contributor.department | SE/AOK/I/ÉI/MTA-SE Molekuláris Élettani Kutatócsoport | |
| dc.contributor.institution | Semmelweis Egyetem | |
| dc.mtmt.swordnote | FELTÖLTŐ: Sonnevend Kinga - sonnevend.kinga@med.semmelweis-univ.hu |