Egyszerű nézet

dc.contributor.author Feller, Tímea
dc.contributor.author Kellermayer, Miklós
dc.contributor.author Kiss, Balázs
dc.date.accessioned 2022-06-20T10:14:27Z
dc.date.available 2022-06-20T10:14:27Z
dc.date.issued 2014
dc.identifier 84901588643
dc.identifier.citation pagination=462-471; journalVolume=186; journalIssueNumber=3; journalTitle=JOURNAL OF STRUCTURAL BIOLOGY;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/5418
dc.identifier.uri doi:10.1016/j.jsb.2014.04.002
dc.description.abstract Hemostasis is a complex process that relies on the sensitive balance between the formation and breakdown of the thrombus, a three-dimensional polymer network of the fibrous protein fibrin. Neither the details of the fibrinogen-fibrin transition, nor the exact mechanisms of fibrin degradation are fully understood at the molecular level. In the present work we investigated the nanoscale-changes in the viscoelasticity of the 3D-fibrin network during fibrinogenesis and streptokinase (STK)-induced fibrinolysis by using a novel application of force spectroscopy, named nano-thrombelastography. In this method the changes in the bending of an oscillating atomic-force-microscope (AFM) cantilever in human blood-plasma droplet were followed as a function of time. Whereas the global features of the time-dependent change in cantilever deflection corresponded well to a macroscopic thrombelastogram, the underlying force spectra revealed large, sample-dependent oscillations in the range of 3-50nN and allowed the separation of elastic and viscous components of fibrin behavior. Upon STK treatment the nano-thrombelastogram signal decayed gradually. The decay was driven by a decrease in thrombus elasticity, whereas thrombus viscosity decayed with a time delay. In scanning AFM images mature fibrin appeared as 17-nm-high and 12-196-nm-wide filaments. STK-treatment resulted in the decrease of filament height and the appearance of a surface roughness with 23.7nm discrete steps that corresponds well to the length of a fibrinogen monomer. Thus, the initial decay of thrombus elasticity during fibrinolysis may be caused by the axial rupture of fibrin fibers.
dc.relation.ispartof urn:issn:1047-8477
dc.title Nano-thrombelastography of fibrin during blood plasma clotting.
dc.type Journal Article
dc.date.updated 2018-05-10T12:41:53Z
dc.language.rfc3066 en
dc.identifier.mtmt 2580434
dc.identifier.wos 000336880800017
dc.identifier.scopus 84901588643
dc.identifier.pubmed 24736106
dc.contributor.department SE/AOK/I/BSI/MTA-SE Molekuláris Biofizikai Kutatócsoport
dc.contributor.department SE/AOK/I/Biofizikai és Sugárbiológiai Intézet
dc.contributor.institution Semmelweis Egyetem
dc.mtmt.swordnote FELTÖLTŐ: Haluszka Dóra - haluszka.dora@med.semmelweis-univ.hu


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet