Egyszerű nézet

dc.contributor.author Murvai Csilla Ünige
dc.contributor.author Somkuti Judit
dc.contributor.author Smeller László
dc.contributor.author Penke Botond
dc.contributor.author Kellermayer Miklós
dc.date.accessioned 2018-05-15T11:25:48Z
dc.date.available 2018-05-15T11:25:48Z
dc.date.issued 2015
dc.identifier 84922440343
dc.identifier.citation pagination=327-332; journalVolume=1854; journalIssueNumber=5; journalTitle=BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/5425
dc.identifier.uri doi:10.1016/j.bbapap.2015.01.003
dc.description.abstract Aβ25-35, the fibril-forming, biologically active toxic fragment of the full-length amyloid β-peptide also forms fibrils on mica by an epitaxial assembly mechanism. Here we investigated, by using atomic force microscopy, nanomechanical manipulation and FTIR spectroscopy, whether the epitaxially-grown fibrils display structural and mechanical features similar to the ones evolving under equilibrium conditions in bulk solution. Unlike epitaxially-grown fibrils, solution-grown fibrils displayed a heterogeneous morphology and an apparently helical structure. While fibril assembly in solution occurred on a time scale of hours, on mica surface fibrils appeared within a few minutes. Both types of fibrils showed a similar plateau-like nanomechanical response characterized by the appearance of force staircases. The IR spectra of both fibril types contained an intense peak between 1620 and 1640 cm-1 indicating that β- sheets dominate their structure. A shift in the amide I band towards greater wavenumbers in epitaxially assembled fibrils suggests that their structure is less compact than that of solution grown fibrils. Thus, equilibrium conditions are required for a full structural compaction. Epitaxial Aβ25-35 fibril assembly, while significantly accelerated, may trap the fibrils in less compact configurations. Considering that under in vivo conditions the assembly of amyloid fibrils is influenced by the presence of extracellular matrix components, the ultimate fibril structure is likely to be influenced by the features of underlying matrix elements.
dc.relation.ispartof urn:issn:1570-9639
dc.title Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils
dc.type Journal Article
dc.date.updated 2018-05-10T13:18:21Z
dc.language.rfc3066 en
dc.identifier.mtmt 2817472
dc.identifier.wos 000353089600002
dc.identifier.pubmed 25600136
dc.contributor.department SE/AOK/I/BSI/MTA-SE Molekuláris Biofizikai Kutatócsoport
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet