Egyszerű nézet

dc.contributor.author Kaszás, Nóra
dc.contributor.author Bozó, Tamás
dc.contributor.author Budai, Marianna
dc.contributor.author Gróf, Pál
dc.date.accessioned 2014-11-16T18:07:48Z
dc.date.available 2014-11-16T18:07:48Z
dc.date.issued 2013
dc.identifier 84872502435
dc.identifier.citation pagination=694-705; journalVolume=102; journalIssueNumber=2; journalTitle=JOURNAL OF PHARMACEUTICAL SCIENCES;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/542
dc.identifier.uri doi:10.1002/jps.23410
dc.description.abstract This study aimed at investigating some respects of binding and interaction between water-soluble drugs and liposomal carrier systems depending on their size and lamellarity. As model substance, ciprofloxacin hydrochloride (CPFX) was incorporated into giant unilamellar vesicles (GUVs) to study their CPFX encapsulation/binding capacity. To characterize molecular interactions of various CPFX microspecies with lipid bilayer, zeta potential and electron paramagnetic resonance (EPR) spectroscopy measurements were performed. The increase of the zeta potential at pH 5.4 but no change at pH 7.2 was interpreted in terms of the CPFX microspecies' distribution at the two pH values. EPR observations showed an increased fluidity because of CPFX binding to GUVs. We worked out and applied a three-compartment dialysis model to separately determine the rate of drug diffusion through the liposomal membrane. Equilibrium dialysis showed (a) different permeation of CPFX through the membranes of GUVs and multilamellar vesicles (MLVs), with characteristic half-lives of 54.4 and 18.1 h, respectively; and (b) increased retention of CPFX in case of GUVs with released amounts of 70% compared with about 97% in case of MLVs. Our results may provide further details for efficient design of liposomal formulations incorporating water-soluble drugs. (c) 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:694-705, 2013.
dc.relation.ispartof urn:issn:0022-3549
dc.title Ciprofloxacin encapsulation into giant unilamellar vesicles: Membrane binding and release.
dc.type Journal Article
dc.date.updated 2014-11-16T18:06:57Z
dc.language.rfc3066 en
dc.identifier.mtmt 2192021
dc.identifier.wos 000313790100040
dc.identifier.pubmed 23233199
dc.contributor.department SE/GYTK/Gyógyszerészeti Intézet
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet