Egyszerű nézet

dc.contributor.author Fekete, Tibor
dc.contributor.author Rásó, Erzsébet
dc.contributor.author Pete, Imre
dc.contributor.author Tegze, Bálint
dc.contributor.author Likó, István
dc.contributor.author Munkácsy, Gyöngyi
dc.contributor.author Sipos, Norbert
dc.contributor.author Rigó, János
dc.contributor.author Győrffy, Balázs
dc.date.accessioned 2018-12-20T13:58:45Z
dc.date.available 2018-12-20T13:58:45Z
dc.date.issued 2012
dc.identifier 84860214430
dc.identifier.citation pagination=95-105; journalVolume=131; journalIssueNumber=1; journalTitle=INTERNATIONAL JOURNAL OF CANCER;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/5714
dc.identifier.uri doi:10.1002/ijc.26364
dc.description.abstract Transcriptomic analysis of global gene expression in ovarian carcinoma can identify dysregulated genes capable to serve as molecular markers for histology subtypes and survival. The aim of this study was to validate previous candidate signatures in an independent setting and to identify single genes capable to serve as biomarkers for ovarian cancer progression. As several datasets are available in the GEO today, we were able to perform a true meta-analysis. First, 829 samples (11 datasets) were downloaded, and the predictive power of 16 previously published gene sets was assessed. Of these, 8 were capable to discriminate histology subtypes and none was capable to predict survival. To overcome the differences in previous studies, we used the 829 samples to identify new predictors. Then we collected 64 ovarian cancer samples (median relapse-free survival 24.5 months) and performed TaqMan RT-PCR analysis for the best 40 genes associated with histology subtypes and survival. Over 90% of subtype-associated genes were confirmed. Overall survival was effectively predicted by hormone receptors (PGR and ESR2) and by TSPAN8. Relapse-free survival was predicted by MAPT and SNCG. In summary, we successfully validated several gene sets in a meta-analysis in large datasets of ovarian samples. Additionally, several individual genes identified were validated in a clinical cohort.
dc.relation.ispartof urn:issn:0020-7136
dc.title Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples
dc.type Journal Article
dc.date.updated 2018-07-06T07:08:53Z
dc.language.rfc3066 en
dc.identifier.mtmt 1680416
dc.identifier.wos 000303050100010
dc.identifier.pubmed 21858809
dc.contributor.department SE/AOK/K/ISZGYK/MTA-SE Gyermekgyógyászati és Nephrológiai Kutatócsoport
dc.contributor.department SE/AOK/K/I. Sz. Gyermekgyógyászati Klinika
dc.contributor.department SE/AOK/I/II. Sz. Patológiai Intézet
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet