Egyszerű nézet

dc.contributor.author Cooper Chris E
dc.contributor.author Silkstone Gary G A
dc.contributor.author Simons Michelle
dc.contributor.author Rajagopal Badri
dc.contributor.author Syrett Natalie
dc.contributor.author Shaik Thoufieq
dc.contributor.author Gretton Svetlana
dc.contributor.author Welbourn Elizabeth
dc.contributor.author Bülow Leif
dc.contributor.author Eriksson Nélida Leiva
dc.contributor.author Ronda Luca
dc.contributor.author Mozzarelli Andrea
dc.contributor.author Eke, András
dc.contributor.author Máthé, Domokos
dc.contributor.author Reeder Brandon J
dc.date.accessioned 2019-03-27T14:46:04Z
dc.date.available 2019-03-27T14:46:04Z
dc.date.issued 2018
dc.identifier.citation journalVolume=134;journalTitle=FREE RADICAL BIOLOGY AND MEDICINE;pagerange=106-118;journalAbbreviatedTitle=FREE RADICAL BIO MED;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/6740
dc.identifier.uri doi:10.1016/j.freeradbiomed.2018.12.030
dc.description.abstract Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb β subunit (βF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form. We inserted different single tyrosine mutations into the α and β subunits of Hb to determine if this effect of βF41Y was unique. Every mutation that was inserted within electron transfer range of the protein surface and the heme increased the rate of ferryl reduction. However, surprisingly, three of the mutations (βT84Y, αL91Y and βF85Y) also increased the rate of ascorbate reduction of ferric(met) Hb to ferrous(oxy) Hb. The rate enhancement was most evident at ascorbate concentrations equivalent to that found in plasma (< 100 μM), suggesting that it might be of benefit in decreasing oxidative stress in vivo. The most promising mutant (βT84Y) was stable with no increase in autoxidation or heme loss. A decrease in membrane damage following Hb addition to HEK cells correlated with the ability of βT84Y to maintain the protein in its oxygenated form. When PEGylated and injected into mice, βT84Y was shown to have an increased vascular half time compared to wild type PEGylated Hb. βT84Y represents a new class of mutations with the ability to enhance reduction of both ferryl and ferric Hb, and thus has potential to decrease adverse side effects as one component of a final HBOC product.
dc.format.extent 106-118
dc.relation.ispartof urn:issn:0891-5849
dc.title Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute
dc.type Journal Article
dc.date.updated 2019-02-06T10:16:47Z
dc.language.rfc3066 en
dc.rights.holder NULL
dc.identifier.mtmt 30424146
dc.identifier.pubmed 30594736
dc.contributor.department SE/AOK/I/Élettani Intézet
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet