Egyszerű nézet

dc.contributor.author Breeze, P
dc.contributor.author Squires, H
dc.contributor.author Chilcott, J
dc.contributor.author Stride, C
dc.contributor.author Diggle, PJ
dc.contributor.author Brunner, E
dc.contributor.author Tabák, Ádám
dc.contributor.author Brennan, A
dc.date.accessioned 2020-08-28T07:51:10Z
dc.date.available 2020-08-28T07:51:10Z
dc.date.issued 2016
dc.identifier.citation journalVolume=38;journalIssueNumber=4;journalTitle=JOURNAL OF PUBLIC HEALTH;pagerange=679-687;journalAbbreviatedTitle=J PUBLIC HEALTH;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/7513
dc.identifier.uri doi:10.1093/pubmed/fdv160
dc.description.abstract BACKGROUND: Novel epidemiology models are required to link correlated variables over time, especially haemoglobin A1c (HbA1c) and body mass index (BMI) for diabetes prevention policy analysis. This article develops an epidemiology model to correlate metabolic risk factor trajectories. METHOD: BMI, fasting plasma glucose, 2-h glucose, HbA1c, systolic blood pressure, total cholesterol and high density lipoprotein (HDL) cholesterol were analysed over 16 years from 8150 participants of the Whitehall II prospective cohort study. Latent growth curve modelling was employed to simultaneously estimate trajectories for multiple metabolic risk factors allowing for variation between individuals. A simulation model compared simulated outcomes with the observed data. RESULTS: The model identified that the change in BMI was associated with changes in glycaemia, total cholesterol and systolic blood pressure. The statistical analysis quantified associations among the longitudinal risk factor trajectories. Growth in latent glycaemia was positively correlated with systolic blood pressure and negatively correlated with HDL cholesterol. The goodness-of-fit analysis indicates reasonable fit to the data. CONCLUSIONS: This is the first statistical model that estimates trajectories of metabolic risk factors simultaneously for diabetes to predict joint correlated risk factor trajectories. This can inform comparisons of the effectiveness and cost-effectiveness of preventive interventions, which aim to modify metabolic risk factors.
dc.format.extent 679-687
dc.relation.ispartof urn:issn:1741-3842
dc.title A statistical model to describe longitudinal and correlated metabolic risk factors: the Whitehall II prospective study
dc.type Journal Article
dc.date.updated 2019-08-21T11:03:14Z
dc.language.rfc3066 en
dc.rights.holder NULL
dc.identifier.mtmt 3047944
dc.identifier.wos 000395817000035
dc.identifier.pubmed 26547089
dc.contributor.department SE/AOK/K/I. Sz. Belgyógyászati Klinika
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet