Egyszerű nézet

dc.contributor.author Bui, David
dc.contributor.author Ravasz, Dóra
dc.contributor.author Chinopoulos, Christos
dc.date.available 2019-12-10T12:12:21Z
dc.date.issued 2019
dc.identifier 85062612457
dc.identifier.citation journalVolume=44;journalIssueNumber=10;journalTitle=NEUROCHEMICAL RESEARCH;pagerange=2301-2306;journalAbbreviatedTitle=NEUROCHEM RES;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/7631
dc.identifier.uri doi:10.1007/s11064-019-02759-8
dc.description.abstract The reaction catalyzed by succinate-CoA ligase in the mitochondrial matrix yields a high-energy phosphate when operating towards hydrolysis of the thioester bond of succinyl-CoA, known as mitochondrial substrate-level phosphorylation (mSLP). The catabolism of several metabolites converge to succinyl-CoA but through different biochemical pathways. Among them, threonine, serine and methionine catabolize to succinyl-CoA through the common intermediate, 2-ketobutyrate. During the course of this pathway 2-ketobutyrate will become succinyl-CoA through propionyl-CoA catabolism, obligatorily passing through an ATP-consuming step substantiated by propionyl-CoA carboxylase. Here, by recording the directionality of the adenine nucleotide translocase while measuring membrane potential we tested the hypothesis that catabolism of 2-ketobutyrate negates mSLP due to the ATP-consuming propionyl-CoA carboxylase step in rotenone-treated, isolated mouse liver and brain mitochondria. 2-Ketobutyrate produced a less negative membrane potential compared to NADH or FADH2-linked substrates, which was sensitive to inhibition by rotenone, atpenin and arsenate, implying the involvement of complex I, complex II and a dehydrogenase-most likely branched chain keto-acid dehydrogenase, respectively. Co-addition of 2-ketobutyrate with NADH- or FADH2-linked substrates yielded no greater membrane potential than in the presence of substrates alone. However, in the presence of NADH-linked substrates, 2-ketobutyrate prevented mSLP in a dose-dependent manner. Our results imply that despite that 2-ketobutyrate leads to succinyl-CoA formation, obligatory metabolism through propionyl-CoA carboxylase associated with ATP expenditure abolishes mSLP. The provision of metabolites converging to 2-ketobutyrate may be a useful way for manipulating mSLP without using pharmacological or genetic tools.
dc.format.extent 1-6
dc.relation.ispartof urn:issn:0364-3190
dc.title The Effect of 2-Ketobutyrate on Mitochondrial Substrate-Level Phosphorylation
dc.type Journal Article
dc.date.updated 2019-09-09T12:21:27Z
dc.language.rfc3066 en
dc.rights.holder NULL
dc.identifier.mtmt 30610955
dc.identifier.pubmed 30810978
dc.contributor.department SE/AOK/I/Orvosi Biokémiai Intézet
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet