Egyszerű nézet

dc.contributor Horizon 2020 Twinning project EdEN
dc.contributor.author Németh, Krisztina
dc.contributor.author Kazsoki, Adrienn
dc.contributor.author Visnovitz, Tamás
dc.contributor.author Pinke, Balázs
dc.contributor.author Mészáros, László
dc.contributor.author Buzás, Edit I.
dc.contributor.author Zelkó, Romána
dc.date.accessioned 2023-04-06T09:01:46Z
dc.date.available 2023-04-06T09:01:46Z
dc.date.issued 2022
dc.identifier 85144329763
dc.identifier.citation journalVolume=12;journalIssueNumber=1;journalTitle=SCIENTIFIC REPORTS;pagination=22012, pages: 8;;journalAbbreviatedTitle=SCI REP;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/9384
dc.identifier.uri doi:https://doi.org/10.1038/s41598-022-25916-6
dc.description.abstract Extracellular vesicles (EVs) are cell-derived, membrane-enclosed particles with the potential for a wide range of future therapeutic applications. However, EVs have almost always been administered by direct injection, likely hindering their efficacy because of rapid clearance from the injection site. The present study aimed to incorporate medium-sized extracellular vesicles (mEVs) into fast-dissolving electrospun polyvinylpyrrolidone-based nanofibers to explore the storage-dependent structure–activity relationship of the resulting nanofibrous formulations. Aqueous polyvinylpyrrolidone-based precursor solutions were selected for the electrospinning process. The presence of EVs in the electrospun samples was confirmed by transmission electron microscopy, flow cytometry, and confocal laser scanning microscope. The results indicate that the fibrous structure of the samples was preserved until the end of the 12-week storage period. Furthermore, regardless of the storage temperature (4 °C or room temperature), nanofibers and nanofiber-associated EVs were present throughout the experimental period. Incorporating EVs into a stable solid polymeric delivery base could preserve their stability; meanwhile, according to the characteristics of the polymer, their targeted and controlled release can be achieved.
dc.format.extent 22012
dc.relation.ispartof urn:issn:2045-2322
dc.title Nanofiber formation as a promising technology for preservation and easy storage of extracellular vesicles
dc.type Journal Article
dc.date.updated 2023-04-04T12:56:29Z
dc.language.rfc3066 en
dc.rights.holder NULL
dc.identifier.mtmt 33395899
dc.identifier.pubmed 36539440
dc.contributor.institution ELKH-SE Transzlációs Extracelluláris Vezikula Kutatócsoport
dc.contributor.institution Polimertechnika Tanszék
dc.contributor.institution Egyetemi Gyógyszertár Gyógyszerügyi Szervezési Intézet
dc.contributor.institution MTA-SE Immun-proteogenomikai Extracelluláris Vezikula Kutatócsoport
dc.contributor.institution Növényélettani és Molekuláris Növénybiológiai Tanszék
dc.contributor.institution Semmelweis Egyetem
dc.contributor.institution Gyógyszerészeti Intézet
dc.contributor.institution Genetikai, Sejt- és Immunbiológiai Intézet
dc.contributor.institution MTA-BME Kompozittechnológiai Kutatócsoport
dc.contributor.institution ELKH-BME Kompozittechnológiai Kutatócsoport
dc.mtmt.swordnote These authors contributed equally: Krisztina Németh and Adrienn Kazsoki


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet