Kivonat:
BACKGROUND: Results of ocular biometric measurements in retinal vein occlusion (RVO) eyes are still inconclusive and controversial. The aim of this study was to evaluate the association between ocular axial length (AL), vitreous chamber depth (VCD) and both central (CRVO) and branch retinal vein occlusions (BRVO) using optical low coherence reflectometry (OLCR). METHODS: Both eyes of 37 patients with unilateral CRVO (mean age: 66 +/- 14 years, male:female - 21:16) and 46 patients with unilateral BRVO (mean age: 63 +/- 12 years, male:female - 24:22) were enrolled in this study. The control group consisted of randomly selected single eyes of 67 age and gender matched volunteers without the presence or history of RVO (mean age: 64 +/- 14 years, male:female - 34:33). Optical biometry was performed by OLCR biometer (LenStar LS 900). Average keratometry readings, central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), AL and VCD of eyes with RVO were compared with those of fellow eyes using paired t-tests and with those of control eyes using independent t-tests. RESULTS: Mean CCT, ACD and LT, average keratometry readings of affected RVO eyes, unaffected fellow eyes and control eyes was not statistically different in either groups. In eyes with CRVO mean AL and VCD of affected eyes were significantly shorter than those of control eyes (p < 0.001, p < 0.05), mean difference in AL and VCD between the affected and control eyes was 0.56 +/- 0.15 mm and 0.45 +/- 0.19 mm, respectively. In eyes with BRVO, mean AL of the affected eyes was significantly shorter with a mean difference of 0.57 +/- 0.15 mm (p < 0.001) and the VCD was significantly shorter with a mean difference of 0.61 +/- 0.15 mm (p < 0.001) comparing with the control eyes. CONCLUSION: Shorter AL and VCD might be a potential anatomical predisposing factor for development either of CRVO or BRVO.