Kivonat:
P-glycoprotein (Pgp) is an ABC transporter responsible for
the ATP-dependent efflux of chemotherapeutic compounds from
multidrug resistant cancer cells. Better understanding of the
molecular mechanism of Pgp-mediated transport could promote
rational drug design to circumvent multidrug resistance. By
measuring drug binding affinity and reactivity to a
conformation-sensitive antibody we show here that nucleotide
binding drives Pgp from a high to a low substrate-affinity
state and this switch coincides with the flip from the
inward- to the outward-facing conformation. Furthermore, the
outward-facing conformation survives ATP hydrolysis: the
post-hydrolytic complex is stabilized by vanadate, and the
slow recovery from this state requires two functional
catalytic sites. The catalytically inactive double Walker A
mutant is stabilized in a high substrate affinity inward-open
conformation, but mutants with one intact catalytic center
preserve their ability to hydrolyze ATP and to promote drug
transport, suggesting that the two catalytic sites are
randomly recruited for ATP hydrolysis.