Egyszerű nézet

dc.contributor.author Szalai, Bence
dc.contributor.author Subramanian, Vigneshwari
dc.contributor.author Holland, Christian H
dc.contributor.author Alföldi, Róbert
dc.contributor.author Puskás, László
dc.contributor.author Saez-Rodriguez, Julio
dc.date.accessioned 2019-12-07T11:27:32Z
dc.date.available 2019-12-07T11:27:32Z
dc.date.issued 2019
dc.identifier.citation journalVolume=47;journalIssueNumber=19;journalTitle=NUCLEIC ACIDS RESEARCH;pagerange=10010-10026;journalAbbreviatedTitle=NUCLEIC ACIDS RES;
dc.identifier.uri http://repo.lib.semmelweis.hu//handle/123456789/8009
dc.identifier.uri doi:10.1093/nar/gkz805
dc.description.abstract Transcriptional perturbation signatures are valuable data sources for functional genomics. Linking perturbation signatures to screenings opens the possibility to model cellular phenotypes from expression data and to identify efficacious drugs. We linked perturbation transcriptomics data from the LINCS-L1000 project with cell viability information upon genetic (Achilles project) and chemical (CTRP screen) perturbations yielding more than 90 000 signature-viability pairs. An integrated analysis showed that the cell viability signature is a major factor underlying perturbation signatures. The signature is linked to transcription factors regulating cell death, proliferation and division time. We used the cell viability-signature relationship to predict viability from transcriptomics signatures, and identified and validated compounds that induce cell death in tumor cell lines. We showed that cellular toxicity can lead to unexpected similarity of signatures, confounding mechanism of action discovery. Consensus compound signatures predicted cell-specific drug sensitivity, even if the signature is not measured in the same cell line, and outperformed conventional drug-specific features. Our results can help in understanding mechanisms behind cell death and removing confounding factors of transcriptomic perturbation screens. To interactively browse our results and predict cell viability in new gene expression samples, we developed CEVIChE (CEll VIability Calculator from gene Expression; https://saezlab.shinyapps.io/ceviche/).
dc.format.extent 10010-10026
dc.relation.ispartof urn:issn:0305-1048
dc.title Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction
dc.type Journal Article
dc.date.updated 2019-11-25T15:02:30Z
dc.language.rfc3066 en
dc.rights.holder NULL
dc.identifier.mtmt 30817463
dc.identifier.wos 31552418
dc.identifier.pubmed 31552418
dc.contributor.department SE/AOK/I/Élettani Intézet
dc.contributor.institution Semmelweis Egyetem


Kapcsolódó fájlok:

A fájl jelenleg csak egyetemi IP címről érhető el.

Megtekintés/Megnyitás

Ez a rekord az alábbi gyűjteményekben szerepel:

Egyszerű nézet